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Abstract

Actigraphic measurements are an important part of research in different disciplines, yet the

procedure of determining activity values is unexpectedly not standardized in the literature.

Although the measured raw acceleration signal can be diversely processed, and then the

activity values can be calculated by different activity calculation methods, the documenta-

tions of them are generally incomplete or vary by manufacturer. These numerous activity

metrics may require different types of preprocessing of the acceleration signal. For example,

digital filtering of the acceleration signals can have various parameters; moreover, both the

filter and the activity metrics can also be applied per axis or on the magnitudes of the accel-

eration vector. Level crossing-based activity metrics also depend on threshold level values,

yet the determination of their exact values is unclear as well. Due to the serious inconsis-

tency of determining activity values, we created a detailed and comprehensive comparison

of the different available activity calculation procedures because, up to the present, it was

lacking in the literature. We assessed the different methods by analysing the triaxial acceler-

ation signals measured during a 10-day movement of 42 subjects. We calculated 148 differ-

ent activity signals for each subject’s movement using the combinations of various types of

preprocessing and 7 different activity metrics applied on both axial and magnitude data. We

determined the strength of the linear relationship between the metrics by correlation analy-

sis, while we also examined the effects of the preprocessing steps. Moreover, we estab-

lished that the standard deviation of the data series can be used as an appropriate, adaptive

and generalized threshold level for the level intersection-based metrics. On the basis of

these results, our work also serves as a general guide on how to proceed if one wants to

determine activity from the raw acceleration data. All of the analysed raw acceleration sig-

nals are also publicly available.
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Introduction

Actigraphy is a widespread method utilized mainly in medicine, biophysics and sports science

[1–6], but nowadays, it also tends to be popular in casual everyday use. The method applies a

small, acceleration sensor-based, non-invasive diagnostic tool which is called actigraph, inde-

pendently of the manufacturer. The actigraph, worn on the non-dominant wrist or sometimes

on the hip, can objectively, reliably and cost-effectively record the locomotor activity of the

subject. Based on the analysis of the measured acceleration signal, the actigraph generates an

activity value for successive non-overlapping time slots, i.e. epochs of equal length, using an

activity metric and stores the created activity signal in its memory. It is important to note that

this activity signal is often referred to as physical activity in general, which is rather ambiguous

because physical activity can also be an indicator obtained by further processing of the activity

signal [7–9].

One of the most common fields of use of actigraphic recordings is sleep medicine since, by

analysing the activity signal, scientists can reliably characterize the subjects’ sleep quality [10]

and possible disturbance in their circadian rhythm [11], which are commonly related to men-

tal disorders [12]. Therefore, actigraphy is also frequently utilized in psychiatric research; for

example, to recognize behavioural disorders or to distinguish between similar mental diseases

[13]. Another immensely current use of actigraphs is to determine human physical activity

(PA) [4]. In addition to their therapeutic usage, actigraphic devices are also successfully uti-

lized in the field of human motion pattern analysis [5,6]; for example, to find regularities in the

distribution of humans’ resting and active period durations.

Since actigraphy is a widely and regularly applied multidisciplinary method, its high degree

of standardization and generalization is required and expected. Conversely, multiple studies

have already pointed out that the utilization of actigraphs is inconsistent, independently of the

field of use. As a consequence, direct comparisons of findings between different studies and

the exact reproduction of the results are problematic in several cases. In the following, we

explain this in an extensive and general way.

The main reason of this issue is the lack of a standardized activity metric; in fact, multiple

activity calculation procedures exist [14]. The activity metric describes the way the activity val-

ues are calculated from the somehow preprocessed acceleration signal. However, the activity

calculation procedures are lossy data reduction methods that are implemented by closely

guarded proprietary algorithms and vary by manufacturer. Therefore, the activity data

obtained from different actigraph brands and models are derived from raw acceleration data

in a disparate and generally incomparable way [14]. For example, the preprocessing step fre-

quently includes signal filtering techniques, but the filter properties also depend on the manu-

facturer or the given device [7].

At first glance, one might also think that if we know the exact type of device, it is enough

information about the activity determination procedure, but unfortunately, in multiple cases,

it is false. Consider e.g., the manufacturer of one of the most commonly used actigraph devices

in the field of physical activity research: ActiGraph. In their devices’ documentations, there is

no information about the parameters of their bandpass filtering method. To resolve the issue,

an independent study tried to identify these parameters with reverse engineering [15]. The

same is true for the exact way how these devices calculate their proprietary Activity Count

(AC) metric. Similarly to ActiGraph, studies often name the activity values as "activity counts"

in general, even if they are determined in diverse ways and therefore are not comparable to

each other [3]. For another example, the most commonly used devices in sleep medicine have

two intersection-based activity metrics, yet the exact determination of these threshold values is

unclarified by the manufacturer.
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Another issue is that not only the devices are lacking documentation, but actigraphy mea-

surements in studies are not sufficiently reported either. Since scientists use these devices as

turnkey solutions in an end-user manner, they often do not feel the necessity to report such

details that would be crucial for the reader to understand how to interpret their unit of activity.

For example, in a physical activity-related review article, the authors highlight that 80% of the

studies they have examined do not report any information on the used filter [16]. Multiple

studies further criticize the reporting complexity of studies, as scientists frequently incom-

pletely describe the main aspects of the utilization of actigraphic devices, such as device type,

data processing, activity metric, sampling rate, epoch length, software [17,18].

Not to mention that more and more commercially available actigraphic devices are able to

store the raw triaxial acceleration data instead of activity values. If one decides to use such a

device and still wants to analyse activity values, the whole activity determination process must

be done by oneself after the measurement. Although these manufacturers attempt to give a

helping hand in the form of software packages or documentation [19,20], they are often not

compatible with each other, nor with those devices that immediately produce activity output.

These conflicts further enhance the diversification of activity calculation procedures among

scientists, which is contradictory to standardization.

The aim of this study is not only to highlight these issues again, but to examine the effect of

the processing steps leading from the raw acceleration signals to the activity signals with the

purpose to help scientists to explore, differentiate and choose between the diverse activity cal-

culation possibilities, which is especially helpful if their device records the raw acceleration sig-

nal. In the following, we are summarizing those questions that generally arise during the

activity value determination process.

The raw acceleration signal contains the gravity of Earth. If it is required to be eliminated,

we can simply accomplish it by subtracting 1 g from the magnitudes of the acceleration vector

then taking the absolute value of the difference [21], but this technique is not feasible in the

case of axial data. However, a similar effect can be achieved by digital filtering. The most com-

monly used filtering technique involves a bandpass filter which additionally removes higher

frequency components besides the low-frequency components, including the gravity of Earth.

The filter can be applied on per axis or on the magnitudes of the acceleration [22–24]. Follow-

ing from this, multiple datasets are generatable from a single triaxial acceleration signal

depending on the steps performed in the preprocessing phase.

Since multiple activity metrics are widespread in the literature, we have to decide which

metric we wish to use in the next step. Nevertheless, not any activity metric is applicable on all

datasets. To make it even more complicated, in the case of numerous activity metric and data-

set combinations, we can achieve correctly interpretable activity signals, even if their combina-

tion seems incompatible at first glance, by applying further corrections on the resulting

activity signal. Commonly, several metrics can be applied on a specific dataset, and a metric

can be used on multiple datasets. As a consequence, surprisingly many activity signals can be

generated from a single measurement. This creates the necessity to examine the differences

and relationships between both the obtained activity signals and the possible preprocessings.

Moreover, some metrics can have unclarified technical aspects. For instance, the threshold val-

ues are not satisfactorily described in the literature in the case of the level intersection-based

activity metrics.

Nowadays, it is almost self-evident to measure acceleration on three axes, but how do we

handle the triaxial dataset when we determine the activity value? The activity metric can be

applied to the vector magnitudes, but also on each axis individually [25]. If we do the latter, we

somehow need to determine a single activity value from the three activity values obtained from

the three axes for a given epoch.

PLOS ONE Detailed analysis and comparison of different activity metrics

PLOS ONE | https://doi.org/10.1371/journal.pone.0261718 December 21, 2021 3 / 28

https://doi.org/10.1371/journal.pone.0261718


As presented, there are various issues that are already marked by different studies

[3,7,14,16–18]. Nonetheless, a detailed and comprehensive comparison of the activity metrics

and possible preprocessings has been missing from the literature so far. Therefore, our goal

was to map the relationship between the different activity determination methods by such a

comprehensive analysis. For this purpose, we recorded the raw acceleration signals in three

directions and then compared the activity signals calculated in different ways. Due to fast tech-

nological progress, it is easier and easier to develop or even access a device that measures and

collects the subjects’ raw triaxial acceleration with relatively high frequency for a long period

of time, which opened up the way to digital postprocessing. Therefore, the collection and anal-

ysis of the impact of the activity calculation steps presented below also serve as a guide on what

activity metrics to use, how to use them and how they relate to each other.

Actigraphic recordings

We performed a large-sampled measurement on healthy human subjects equipped with acti-

graph devices specially developed for this project and placed on their non-dominant wrists.

We intended to collect the human motion data in the most general way to ensure flexibility in

the activity determination process and in further analyses based on the calculated activity

signals.

We have developed a small device housed in a 3D-printed capsule of size 41 mm × 16

mm × 11.3 mm (LWH) which weighs only 5.94 grams. The device fits in a commercially avail-

able wristband, integrates a microcontroller (C8051F410), a 3-axis MEMS acceleration sensor

(LIS3DH) and a 1GB-capacity flash memory chip. The high-performance acceleration sensor

is intended to be used in motion sensing applications and provides both the user-programma-

ble sampling rate and the accurate analogue-to-digital conversion. Since the microcontroller

receives digital data from the sensor, the overall accuracy of the device is the same as the accu-

racy of the sensor. The detailed specifications are given in the freely available datasheet. The

device incorporates a real-time quartz clock as well to ensure long-term timing accuracy with

a tolerance of +/- 20 ppm.

The microcontroller continuously reads the data from the accelerometer chip, whose sam-

pling rate can be set from 1 sample/sec to 100 samples/sec. At the used rate of 10 samples/sec,

the device is capable of recording raw acceleration data continuously into the device’s flash

memory for more than three weeks. According to the above, our solution provides all the fea-

tures required for the acquisition of the acceleration signals, just as the commercially available

actigraphs. In addition, we have full control over the measurement process, all the specifica-

tions are openly accessible, and any kind of signal processing can be implemented.

With these devices, we carried out 84 measurements on different individuals from April to

June, 2019. All the participants were recruited from the whole student community at the Uni-

versity of Szeged, Hungary. They were evaluated with the structured interviews of Structured

Clinical Interview for DSM-5, Clinical Version (SCID-5-CV) [26] and Personality Disorder

(SCID-5-PD) [27] for excluding any mental disorders. Volunteer students with a personal his-

tory of psychiatric disorder, history of head injury with loss of consciousness for more than 30

min, current substance abuse, or any medical illness that could significantly constrain neuro-

cognitive functions were excluded. With this selection strategy, such a heterogenous group of

healthy participants was generated that is easily reproducible, and reduces the possibility that

extreme cases (for example, patients with mental disorders or epilepsy) impact our results.

The individual measurements were approximately 14 days long. The collected free-living

acceleration signals were sampled at 10 Hz in the ±8 g measurement interval, as this configura-

tion is viable in diverse fields of use [1,28–32], and our study is not restricted to any specific
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discipline. For the analyses presented in this article, we selected 42 data series with the length

of exactly 10 days. The aim of the selection was to pick those measurements where the subject

rarely took off the device, and only for short periods (for example, when bathing). Since in this

study, we only compare the resulting activity signals calculated from the measured acceleration

data in a technical sense, and we are not performing any analysis based on activity signals, it

was not necessary to filter out these short sections. The selected 42 subjects (all Caucasian, 23

female) were 18–25 years of age (mean 22.46, SD 1.86). The data series of their movements’

raw triaxial accelerations are publicly available (10.6084/m9.figshare.16437684). We also pub-

lished a MATLAB function to read these binary files with ease, which is attached to the shared

data.

Common procedures of determining activity values

In the diverse research area of actigraphy, many different methods are used to calculate activity

values, but details of the applied methods are rarely shown. This makes it difficult to evaluate

and compare results as well as to collect the methods of activity calculation [17,18].

The general steps of determining activity values are depicted in Fig 1. The 3-axis accelera-

tion sampled at relatively high rate (1–100 Hz [1,33]) is preprocessed, which means filtering

the signals, calculating the magnitude of acceleration and, if no filtering has taken place, nor-

malizing. An activity value is then determined for each epoch of the signal based on an activity

metric. The length of the epoch depends on the activity metrics and the area of use (e.g. physi-

cal activity measurement, sleep medicine, etc.), but it is generally between 1 s and 60 s. Conse-

quently, the sampling time of the obtained activity signal is the length of the epoch.

Some metrics are applied to the axial vector components of the measured acceleration (uni-

axial mode) thus generating activity signals per axis or one activity signal from a somehow

defined composition of these. While other metrics are applied to the magnitude of acceleration

vector calculated from the 3-axis vector components (triaxial mode), in this case only one

activity signal is produced. Activity metrics are responsible for data reduction in actigraphs;

their use is justified by the limited resources of the devices since in this way, it is not necessary

to save the acceleration signal sampled with high rate in the memory of the device, only to

store one activity value per epoch.

It can be seen in Fig 1 that in the case of the classic, widespread actigraphs, the whole

sequence of operations is accomplished within the hardware. In the analysis presented below,

our device was only responsible for the measurement and data storage sampled at 10 Hz;

everything else could be done digitally after the measurement. Thus, the different activity

Fig 1. The general steps of determining activity values. The activity for a given Te epoch length calculated from the 3-axis acceleration data

sampled with Ts sampling time.

https://doi.org/10.1371/journal.pone.0261718.g001
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determination methods and metrics became directly comparable. Before we introduce our

examination methods, we are summarizing the different preprocessing steps and activity met-

rics which could be found in the literature so one can see what issues arise during preprocess-

ing and activity calculation if we have digitized acceleration signals.

Preprocessing

Depending on how the signals are preprocessed–e.g. whether filtering is applied or gravity of

Earth (g) is removed in a different way (normalization), and whether applied to axial accelera-

tion or the magnitude of acceleration–the same metric may give a different value. So, beyond

metrics, it is equally important what input dataset we apply them to. Unfortunately, this is

mentioned even less often in the literature. The possible dataset types that result from the pre-

processing step are reviewed below with a nomenclature introduced by us.

Let UFXYZ be a dataset of vector components along the x, y, and z axes, referred to as UFX,

UFY, UFZ per axis. These are the raw axial acceleration data read from the actigraph without

any modification. An example of such signals can be seen in Figs 2A and 3.

Most actigraphic devices of the market include a bandpass filter to filter the signals pro-

vided by the acceleration sensor. The lower cut-off frequency of the bandpass filter is between

0.2 Hz and 0.5 Hz, and the upper cut-off frequency is between 2.5 Hz and 7.0 Hz. However,

not all the necessary information can be found on the exact parameters of the used filters; for

example, the order of the filter is often not indicated [15,16,34]. The use of a bandpass filter is

explained by the fact that by filtering the low-frequency components, the DC component (i.e.,

in this case the g) can be eliminated. Using a high-pass filter, tremors and high-frequency

noise can be filtered out [2]. Since the order of the digital filter used in one of the common

devices has been identified as 3rd order [15,35], and based on this, other studies have already

used a 3rd order Butterworth bandpass filter in the preprocessing of the acceleration signal, we

have also used the same digital filter with 0.25 Hz and 2.5 Hz cut-off frequencies. To examine

the effect of the filter characteristics, we also performed the tests with a 30th order filter with

the same parameterization. Since the results obtained with the two filters showed the same cor-

relation pattern for the activities calculated in different ways, the case of the 3rd order filter is

Fig 2. The effect of different filtering methods. The x-axis acceleration (a) was filtered using a 3rd order (b) digital

Butterworth bandpass filter with fL = 0.25 Hz, fH = 2.5 Hz corner frequencies. The waveforms cover the same

3-minute-long section of a subject’s motion.

https://doi.org/10.1371/journal.pone.0261718.g002
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examined below. Fig 2 shows a raw acceleration signal measured on the x-axis and the wave-

form filtered by the 3rd order filter.

FXYZ denotes the data set obtained by conditioning the UFX, UFY, UFZ signals with a dig-

ital Butterworth bandpass filter [15] (fL = 0.25 Hz, fH = 2.5 Hz, order 3), referred to as FX, FY,

FZ per axis (Fig 3).

Fig 3. Examples for the 6 different dataset types. UFXYZ and FXYZ datasets are compositions of the axial sub datasets. The waveforms cover the same

3-minute-long section of a subject’s motion.

https://doi.org/10.1371/journal.pone.0261718.g003
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If necessary, g can be eliminated without filtration [21] in the case when we are working

with the magnitude of acceleration as shown in Eq 1. Let UFM be the magnitude of the acceler-

ation signal defined by the unmodified vector components (UFXYZ), and UFNM is a data set

composed of normalized values of the UFM data set. In contrast to the filtering-based prepro-

cessing, with normalization, we can eliminate the g without the risk of losing those low fre-

quency components of the hand movement that are in the same frequency range as the gravity

of Earth (i.e., below 0.25 Hz).

UFNM½k� ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UFX½k�2 þ UFY½k�2 þ UFZ½k�2
q

� 1 gj ð1Þ

If we want to get a filtered magnitude of the acceleration signal from triaxial data, we can

perform it in two ways [22–24]. The signals measured on the three axes are filtered first, and

then the resultant magnitude is calculated, or the resultant acceleration signal obtained from

the raw axial signals is filtered. Since the former approach is common for most applications,

but the latter case is simpler and less operation-intensive (as only one digital filtering needs to

be applied), both methods were used in our comparative study. FMpost is the filtered magni-

tude of acceleration defined by the UFM dataset filtered by the presented filter, while FMpre is

the filtered magnitude of acceleration defined by the vector components (FXYZ) filtered by

the x, y, and z axial bandpass filters.

A total of 6 types of input datasets can be generated, to which different activity metrics can

be applied:

• Unfiltered axial accelerations (UFXYZ)

• Unfiltered magnitude of acceleration (UFM)

• Unfiltered normalized magnitude of acceleration (UFNM)

• Filtered axial accelerations (FXYZ)

• Magnitude of acceleration from filtered axial accelerations (FMpre)

• Filtered magnitude of acceleration (FMpost).

The 6 types of input datasets and a comparison of the magnitudes of acceleration calculated

in 4 different ways are shown in an example in Fig 3. As it can be seen, the constant accelera-

tion g disappeared in the case of FMpost, while in the case of UFNM and FMpre, the waveform

was also modified by taking the absolute value in the calculation.

Activity metrics

An activity signal can be calculated from one of the datasets (obtained as the output of the pre-

processing) using an activity metric. We compared 7 significantly differently calculated met-

rics from the actigraphy literature; they are summarized in Table 1.

In the scientific field, the most widely used actigraph devices in the literature [18,36,37] are

manufactured by Ambulatory Monitoring, Inc. among others [34] and are capable of using

three different activity definitions [38]: Proportional Integration Method (PIM), Zero Crossing

Method (ZCM) and Time Above Threshold (TAT). Due to the widespread use of these acti-

graphs, these metrics can be considered as standard activity calculation methods in the field of

medical applications. The PIM mode deserves special attention as it is mainly recommended

for the characterization of activity in research on sleep medicine [39].

No information can be found on the details of the implementation of the integration for

PIM, so in addition to the simplest numerical summation, we also used Simpson’s 3/8 Rule
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method, but the obtained activity signals showed almost perfect agreement (see S1 Appendix),

therefore in the following, we will only discuss the case of the simplest implementation.

While PIM characterizes the intensity of motion, ZCM is related to the frequency of

motion. ZCM compares the acceleration values with a threshold level in a given epoch. The

activity value determined by the method for a time slice is equal to the number of threshold

level intersections. Contrary to the name of the method, the threshold level should be chosen

not for 0, but for a slightly higher value above the noise level; it has no universal value.

TAT is the time spent moving in a given epoch, i.e., the active time. Like ZCM, it compares

magnitude values with a threshold level, but instead of measuring the number of level intersec-

tions, it measures the time duration when the acceleration was greater than the threshold level.

Like ZCM, the value of the threshold level used by the manufacturer is unknown, and there is

no generally accepted value in the literature, only a single recommendation for 0.15 g in a pat-

ent without further explanation [23].

Various devices manufactured by ActiGraph, LLC. [32,40–42] and equipped with one-,

two- and three-axis accelerometers are very common in the field of physical activity testing.

The tools provide a so-called Activity Count (AC), which is a proprietary activity metric, so

with the advent of other vendors, AC has become a collective term that can be supported by

different algorithms [7,43]. However, according to the manufacturer’s description [44,45], the

Table 1. The 7 activity metric definitions from the actigraphy literature compared in this study.

Activity metric Definition

Proportional Integration

Method (PIM)

PIM integrates the acceleration signal for a given epoch. In the following, we use

the simplest numerical integration (Riemann sum):

PIM ¼ Ts

Xn

i¼1

xi;

where x1, x2,. . .,xn−1, xn are the n acceleration values of the given epoch, and Ts is

the sampling time of the acceleration signal.

Zero Crossing Method (ZCM) ZCM counts the number of times the acceleration signal crosses a TZCM threshold

for each epoch.

Time Above Threshold (TAT) TAT measures the length of time that the acceleration signal is above a TTAT

threshold for each epoch.

Mean Amplitude Deviation

(MAD) MAD ¼ 1

n

Xn

i¼1

jri � r j;

where r1, r2,. . .,rn−1, rn are the n magnitude of acceleration values of the given

epoch, r is their arithmetic mean.

Euclidean Norm Minus One

(ENMO) ENMO ¼ 1

n

Xn

i¼1

maxðri � 1; 0Þ;

where r1, r2,. . .,rn−1, rn are the n magnitude of acceleration values of the given

epoch. The values of r are in g.

High-pass Filtered Euclidean

Norm (HFEN) HFEN ¼ 1

n

Xn

i¼1

rfi;

where rf1, rf2,. . .,rfn−1, rfn are the n magnitude of filtered acceleration values of the

given epoch. Earth’s gravity is already eliminated from the axial accelerations by

high-pass filtering before magnitude calculation.

Activity Index (AI)

AI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max 1

3

X3

m¼1

s2
m � s

2

 !

; 0

 !

;

v
u
u
t

where m = 1, 2, 3 corresponds to the three axes, s2
m is the variance of the vector

components along the mth axis of the epoch, and s2 is the variance of the baseline

noise of the total measurement data (systematic noise variance).

A brief description of their working principles is indicated next to their names.

https://doi.org/10.1371/journal.pone.0261718.t001
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AC metrics of ActiGraph devices are very similar to PIM, which performs numerical integra-

tion, so the presented analyses are limited to PIM.

The following metrics have been proposed in other publications [46–48]: Mean Amplitude

Deviation (MAD), Euclidean Norm Minus One (ENMO), High-pass filtered Euclidean Norm

(HFEN) and Activity Index (AI).

The ENMO [47,49] method divides the sum of the acceleration values in g greater than 1

(i.e., greater than g) by the number of values in the epoch. This method can only be applied to

data series from which the effect of gravity of Earth has not yet been eliminated, as this is done

by the method itself.

The MAD [47] determines the average distance of the magnitude values in a given epoch

from its own mean value. Similarly to ENMO, this method eliminates the effect of the gravity

of Earth by definition. However, while ENMO can only be used on magnitude data, where

Earth’s gravity is not eliminated, there is no such restriction in case of MAD. Also, though by

definition MAD applies to the magnitude of acceleration vector, there is no technical barrier

to applying it per axis, so we examined this option in the following, too.

The HFEN [46] determines the average of the magnitude of acceleration values. These mag-

nitude values are calculated by preprocessed triaxial accelerations. During the preprocessing, a

4th order Butterworth high-pass filter with 0.2 Hz cut-off frequency is applied. Since the grav-

ity of Earth is already eliminated at the filtering process, it is not needed to subtract 1 g from

the ri values, as we have seen at the ENMO method. In the following comparisons, the filter

with the settings described here is also applied to HFEN when the 3rd order filter described

earlier is applied to the other metrics.

The AI determines the activity value using the variance of the vector components and a so-

called systematic noise variance. The latter can be determined from the sections of the mea-

surement data when the measuring device has not moved, since this is nothing, but the sum of

the variances of such sections is taken per axis. The introduction of AI was prompted by the

incoherent activity literature [48]; however, the authors aimed to introduce metrics suitable

for distinguishing motion types, so the purpose of the indicator—and, as we shall see, its oper-

ation—significantly differs from that of classical metrics.

As we can see, in each case, a given metric is applied to a given dataset, so in the following,

we will denote the metric as an operation and the dataset as its argument. For example, the

activity calculated by the PIM method for unfiltered normalized magnitudes of acceleration is

PIM(UFNM).

Processing triaxial data

There are several (typically older) devices that record acceleration values on only one or possi-

bly two axes. There is also considerable literature on the analysis of activities calculated for

data per axis with several showing that physical activity can also be well-estimated by analysing

the vertical axis only [50].

If we record the data along three axes, they are also handled in a very diverse way for different

tools and methods, and it is very difficult to adjust the existing nomenclature. Metrics most com-

mon in sleep medicine, like PIM, ZCM and TAT are determined in two ways for triaxial data. In

uniaxial mode, the metrics can be applied separately to the axial vector components; for example,

as it is described in the user manual of the ACTTRUST actigraph, manufactured by Condor

Instruments Ltd. [25]. However, the way of obtaining only one activity value characteristic of a

given epoch from the values per 3 axes is not defined by the manufacturer.

On the other hand, in triaxial mode, the magnitude of the acceleration vector can be deter-

mined from the acceleration signals measured on the three axes, and the metrics are calculated
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based on this magnitude signal [2,22,23]. An example of this is shown by Eq 2, where the triax-

ial value of PIM is calculated by the simplest numerical integration of magnitude.

PIMðUFMÞ ¼ Ts

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UFX½i�2 þ UFY½i�2 þ UFZ½i�2
q

ð2Þ

where n is the number of the measured values in an epoch, and Ts is the sampling time.

In contrast, for the AC of the ActiGraph tool, which is popular in other applications, the

metrics are applied for the axial signals separately, and in the case of triaxial data, one activity

value (“VM3”) is determined by using the three ACs according to Eq 3 [48,51,52] in the case of

UFXYZ data set.

VM3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ACðUFXÞ2 þ ACðUFYÞ2 þ ACðUFZÞ2
q

ð3Þ

As mentioned, the method of calculating AC is also based on a numerical integration within

an epoch, so if we replace AC calculation with a summation, it is easy to see that it does not

match Eq 2.

As can be seen, in addition to the fact that different devices use different metrics and pre-

processing, the activity calculation procedure also differs in how a final metric is determined

from the axial measurements and for which signals and at which processing step the metric is

calculated. To examine the effect of this, we used both of the former approaches. On the one

hand, the metrics are applied to the triaxial data by applying them to the magnitude of the

acceleration signal calculated from the filtered or unfiltered axial signals. On the other hand,

we apply metrics to uniaxial data too, so we apply them to the triaxial signals separately. These

metrics per axis are also compared with the triaxial results on their own; furthermore, a final

activity indicator is calculated from the three indicators obtained for the three axes in a num-

ber of different ways, such as by their sum, sum of squares or VM3 in Eq 3.

Methods of examination

It can be seen that the obtained activity signal depends on the preprocessing of the acceleration

data, as well as on the activity metrics used and on how it is applied to the axial measurements.

Our aim is to examine in detail how and to what extent they depend on these steps. Based on

the different preprocessings and activity metrics used, we determined all possible (a total of

148) minutely-sampled activity signals from a single subject’s 10-days-long raw acceleration

data. Then we computed the Pearson’s correlation coefficients between these minutely-sam-

pled activity signals to assess their similarity [8,50], which resulted in a 148×148 correlation

matrix. It was performed on all the 42 subjects to obtain 42 correlation matrices. Then we

reduced these matrices to a single, averaged matrix by calculating the mean and standard devi-

ation of the identically located cells of the 42 matrices. By analysing the averaged correlation

matrix, we could observe how the different activity calculation procedures averagely correlate

with each other, based on 42 different subjects’ 10-day-long recordings. This comparison was

performed over time- and frequency-domain. In order to do this, we also had to examine

some issues related to the application and implementation of the activity calculation methods,

which are presented below.

Not all metrics can be applied to all the 6 datasets presented earlier, as detailed and demon-

strated in the S2 Appendix for each metric and dataset. In summary, PIM, ZCM and TAT are

inapplicable on the UFXYZ dataset because, for one axis, the measured acceleration caused by

the gravity of Earth depends on the orientation of the device. Since we do not have information

about the orientation, these effects of the presence of the unknown amount of the g in the
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measurements cannot be corrected without low-pass filtering. If no acceleration other than the

gravity of Earth acts on the actigraph, then the length of the magnitude acceleration vector

should be 1 g, therefore the presence of gravity of Earth can be handled for the other datasets.

In addition, PIM can only be applied with further technical corrections (e.g., taking the abso-

lute values) to the FXYZ and FMpost datasets due to the integration of negative acceleration

values and to the UFM datasets because of the presence of gravity of Earth. Owing to the nega-

tive acceleration values in the FXYZ and to the fact that the FMpost dataset moves around 0 g

by filtering, the question arises if further correction may be needed in the case of the ZCM and

TAT calculations as well, which will be examined in more details later.

According to their definition, AI can only be applied to uniaxial datasets (UFXYZ and

FXYZ), while ENMO is applicable only on that dataset which is built up by the magnitudes of

the resultant acceleration vectors and which contains the gravity of Earth (UFM). As men-

tioned in its introduction, HFEN requires a specially conditioned dataset. MAD is the only

metric that can be applied to each dataset (if its definition is extended to axial signals). The

summary of metrics’ applicability for each dataset is shown in Fig 4.

In the case of two classical metrics, it is necessary to use level crossing. Unfortunately, there

is no satisfactory description in the literature on how these should be chosen, so we examined

the question in detail. The ZCM equates the activity value of an epoch of acceleration signal

with the number of level intersections taken at a single TZCM threshold level, while the TAT

gives the total time of the values above the TTAT threshold level. The threshold levels should be

placed above the measurement noise level, otherwise high-frequency noise may generate false

activity values. In order to determine the ideal value of the threshold levels, starting from the

smallest possible TZCM and TTAT value and taking cumulative steps of 0.05 g, different thresh-

old values were determined for the given dataset type. Correlation coefficients were calculated

between the activity signals produced with these different threshold levels and between these

signals and activity signals based on other metrics.

Another factor on which the shape of the activity signal depends, and which has not been

discussed here yet, is the size of the epochs for which the activity metric is applied, i.e., how

long time slots are processed for a characteristic activity value due to the data reduction. Fortu-

nately, this parameter has been investigated by several studies in the past [53]. Epoch length

can also be application- and metric-dependent, typically ranging from a few seconds to a min-

ute [54]. Since the 1-minute epoch length is very common, and it has been shown that substan-

tial extra information can no longer be obtained at a higher resolution [55,56], we used the

value of Te for 60 seconds below. In the following, uniformly with this epoch length, the analy-

ses shown will be performed on 42 10-day-long measurements.

Fig 4. Summary of metrics’ applicability for the different datasets. Details are presented in S2 Appendix.

https://doi.org/10.1371/journal.pone.0261718.g004
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Ethics statement

The study was carried out as a part of research entitled “Examination neurobiological, cogni-

tive and neurophenomenological aspects of the susceptibilities to mood swings or unusual

experiences of healthy volunteer students„, and was approved by the Human Investigation

Review Board, University of Szeged, Albert Szent-Györgyi Clinical Centre, Hungary (No 267/

2018-SZTE) following its recommendations. All subjects gave written informed consent under

the Declaration of Helsinki was informed of their right to withdraw at any time without expla-

nation and they were financially compensated.

Results and discussion

Using the examination methods presented earlier, we firstly determined the appropriate

thresholds required to calculate ZCM and TAT metrics. Once we have determined how to

implement each metric calculation, we mapped the effect of different preprocessings, different

treatment methods of axial measurements and the similarity of different metrics.

Correlation analysis was used for both investigations. In each case, when examining the

correlation of two signals calculated in some way, we proceeded as follows: for the motion sig-

nal of a given subject, the two activity signals were determined according to the methods to be

compared, and then their correlation coefficient was calculated. This was done for all 42 sub-

jects, and the means and standard deviations of these correlation coefficients were used in the

analysis.

Determination of threshold levels

To determine the optimal value of the TZCM and TTAT thresholds, we calculated the ZCM and

TAT activity signals using different threshold levels and then examined their relationship to

activity signals based on other metrics. According to Fig 4, the ZCM and TAT methods can be

applied to 5–5 different datasets. Therefore, the analysis was performed for each dataset.

It can be seen in Fig 3 that the acceleration values of the FXYZ and FMpost datasets are cen-

tralized around 0 g. The question arises in the case of these datasets whether we have to apply

an additional negative threshold level due to the negative acceleration values, or equivalently,

whether we have to examine the level crossing of the absolute values of the two datasets. As it

is detailed in S3 Appendix, we presented that the activity signals obtained from the original

and the full-rectified data series show an almost perfect correlation for both metrics. Besides

that, the full-rectification approximately doubles the generated activity values as it is expected

for datasets that exhibit certain symmetricity around 0 g. Therefore, ZCM and TAT metrics

are directly applicable to all of the mentioned 5 datasets using only one positive threshold

level.

To find the appropriate value of this threshold, we incremented it using cumulative steps.

Since UFM is the only dataset where the gravity of Earth is not eliminated, TZCM and TTAT

were increased from 1 g. For every other dataset, we increased its value from 0 g.

Activity signals obtained with different threshold levels were compared with the ENMO

and HFEN activities, as they can only be calculated in one way (see Fig 4), thus avoiding the

examination of additional dependent variables during the comparison. Figs 5 and 6 indicate

the results for a dataset containing vector magnitudes (UFM) and a dataset containing axial

accelerations (FY) as examples, but SFig 3 of the S3 Appendix provides additional graphs for

the remaining datasets.

For both the ZCM and TAT activity signals calculated for each dataset, it can be observed

that the correlation with other metrics increases rapidly with increasing TZCM and TTAT and

reaches a value above 0.85, which suggests a strong relationship, and with further increase of
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threshold levels, it decreases with different rates. If TZCM and TTAT are set to the standard devi-

ation (SD) of the dataset, a strong correlation can be observed with both ENMO and HFEN

activity signals. Note that in the case of UFM, it is necessary to add 1 g to the SD due to the

constant 1 g present owing to the gravity of Earth.

On each figure, the red correlation curves represent the correlation between the ZCM/TAT

activities calculated with the given TZCM/TTAT threshold value and the same activity metric cal-

culated using SD of the dataset (or SD+1 g in the case of UFM) as the threshold. Based on the

Fig 5. Correlation between ZCM activity signal and activity signals based on other metrics using different TZCM thresholds in the case

of UFM (a) and FY (b) datasets. The datapoints of the correlation curves as well as the SD of the datasets were based on the mean of 42

measurements. On each panel, the correlation curves show the Pearson’s correlation coefficients between the ZCM activity signals

calculated with the given TZCM threshold value (x-axis) and the ENMO activity signal, the HFEN activity signal, the ZCM activity

signal calculated using the SD+1 g (a) or SD (b) of the dataset as threshold.

https://doi.org/10.1371/journal.pone.0261718.g005

Fig 6. Correlation between TAT activity signal and activity signals based on other metrics using different TTAT thresholds in the case

of UFM (a) and FY (b) datasets. The datapoints of the correlation curves as well as the SD of the datasets were based on the mean of 42

measurements. On each panel, the correlation curves show the Pearson’s correlation coefficients between the TAT activity signals

calculated with the given TTAT threshold value (x-axis) and the ENMO activity signal, the HFEN activity signal, the TAT activity signal

calculated using the SD+1 g (a) or SD (b) of the dataset as threshold.

https://doi.org/10.1371/journal.pone.0261718.g006
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figures, it can be concluded that the correlation just marginally changes in the region around

the SD of the datasets, i.e., in this range of thresholds, the calculated activity signals are very

similar. It is important to note that the only recommendation we have for the TAT method

threshold is 0.15 g [23], which in all cases falls within this small range around the mentioned

SD.

In addition, since using the SD of the measured dataset is an adaptive method that can have

several advantages over a pre-fixed threshold value, it can be used as a universal threshold level

for the ZCM and TAT methods. Therefore, in the further application of the ZCM and TAT

metrics, the value of TZCM and TTAT was dynamically set to the SD of the given input data (in

the case of UFM, it is necessary to add 1 to the SD due to the constant 1 g present owing to the

gravity of Earth).

Comparison of different activity calculations using correlation analysis

Activity metrics were run for all possible preprocessed dataset types that could be generated

from a given actigraphic measurement, and correlations were calculated between these activity

signals. Activity calculations were also performed for the resulting vector and separately for

the axes. We also tested additional indicators which were generated as different compositions

of activity values obtained for the axial data. The correlation analysis was also performed in the

time and frequency domain. 148 different types of activity signals were generated for each sub-

jects’ measured motion; the correlation of each activity signal with every other and itself was

calculated. The S1 Table contains the means and standard deviations of the correlation coeffi-

cients calculated for the 42 subjects’ motion.

Based on the values of the correlation coefficients, it became possible to quantify the extent

of the temporal and spectral similarities of the different activity signals. In the following, we

examine these relationships by analysing parts of the S1 Table.

Effect of preprocessing. Out of the 7 examined metrics, the ENMO method is compatible

with only one type of preprocessed dataset, which is unfiltered and normalized, and HFEN

requires a specially conditioned dataset that is filtered and not normalized, so we examined the

effect of filtering and normalization on the other 5 metrics. The correlations between the activ-

ity signals calculated using the same metric, but different preprocessing methods are shown in

Table 2 below. In the table, only the different preprocesses of the magnitude of the acceleration

signal are compared, the calculation of activity from the axial data is examined in more details

later.

Table 2A shows a comparison of activity signals calculated from normalized (UFNM) and

raw data (UFM) in the case of the 4 possible metrics. It can be seen that with the exception of

PIM, it is true for the other metrics that the effect of normalization is negligible since the small-

est correlation between the raw and normalized signals is 0.97. In the case of PIM (where fur-

ther processing on datasets was required, see S2 Appendix), the table indicates that although

there is a strong similarity, the difference is larger than in the other metrics. Therefore, in the

following, if we examine the unfiltered signals in the analysis, they will be examined only for

the UFM dataset in the case of ZCM, TAT and MAD, and for the UFM and UFNM datasets

for PIM.

In Table 2B, we can see that the filtering does not cause a significant difference in the case

of AI; the correlation between the activities calculated for UFXYZ and FXYZ datasets is strong.

In Table 2A, we can also examine the effect of both types of filtering presented previously. In

the case of vector magnitudes, the activity signals calculated for FMpost show a very high simi-

larity to the activity signals calculated for the unfiltered signals, regardless of the metric. How-

ever, the table also reveals that in the case of FMpre, when we filter the axial accelerations
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before the magnitude calculation, the effect of filtering cannot be ignored. For ZCM and TAT,

the correlation is still strong (0.84 is the lowest correlation value), but for PIM and MAD,

although the similarity is clear, we can observe a significant difference between the filtered and

unfiltered signals. Furthermore, it can be stated in general that the difference between activities

based on raw (UFM) and filtered (FMpre) data is larger than between the metrics applied on

normalized (UFNM) and filtered (FMpre) data; however, this difference is not significant.

On the whole, it can be concluded that for further examinations, both filtered and unfil-

tered signals need to be examined separately.

Comparison of activity metrics. Our main goal was to describe the relationship between

different activity metrics. Once we know which metrics are worth comparing for which pre-

processed datasets, and we are aware of the optimal settings for the metrics, we have the oppor-

tunity to compare the activity signals obtained with different metrics.

Figs 7 and 8 present a comparison of the activity signals calculated using different metrics

in time-domain. The input of the AI method is the unfiltered or filtered acceleration measured

on the three axes (UFXYZ, FXYZ), but for the other metrics, the activity signals were calcu-

lated for the unfiltered and two types of filtered magnitudes of acceleration (UFM and FMpost

in Fig 7, UFM and FMpre in Fig 8). In accordance with the above, two types of unfiltered data-

sets, raw and normalized datasets (UFM and UFNM) were also examined for PIM. As ENMO

Table 2. The effect of the normalization and filtering presented by the correlations of the activity signals calculated using the same metric, but different preprocess-

ing methods.

(a) PIM UFM UFNM FMpre |FMpost|

UFM 1±0 0.84771±0.04 0.73104±0.06 0.79153±0.06

UFNM 0.84771±0.04 1±0 0.91687±0.02 0.9859±0.01

FMpre 0.73104±0.06 0.91687±0.02 1±0 0.91655±0.02

|FMpost| 0.79153±0.06 0.9859±0.01 0.91655±0.02 1±0

ZCM UFM UFNM FMpre FMpost

UFM 1±0 0.97379±0.01 0.85344±0.03 0.97519±0.01

UFNM 0.97379±0.01 1±0 0.89848±0.02 0.95753±0.02

FMpre 0.85344±0.03 0.89848±0.02 1±0 0.84449±0.04

FMpost 0.97519±0.01 0.95753±0.02 0.84449±0.04 1±0

TAT UFM UFNM FMpre FMpost

UFM 1±0 0.98971±0 0.92047±0.02 0.98005±0.01

UFNM 0.98971±0 1±0 0.9317±0.01 0.99175±0

FMpre 0.92047±0.02 0.9317±0.01 1±0 0.93364±0.01

FMpost 0.98005±0.01 0.99175±0 0.93364±0.01 1±0

MAD UFM UFNM FMpre FMpost

UFM 1±0 0.97592±0.01 0.78673±0.04 0.98676±0.01

UFNM 0.97592±0.01 1±0 0.86405±0.04 0.94755±0.02

FMpre 0.78673±0.04 0.86405±0.04 1±0 0.7685±0.05

FMpost 0.98676±0.01 0.94755±0.02 0.7685±0.05 1±0

(b) AI UFXYZ FXYZ

UFXYZ 1±0 0.90292±0.02

FXYZ 0.90292±0.02 1±0

The Pearson’s correlation coefficients are calculated for 42 measurements, and their means and SDs are represented. Sub table (a) reveals the correlation between the

activity signals calculated by those metrics which are applicable on the raw, filtered and also on the normalized datasets containing the magnitudes of acceleration. On

the other hand, sub table (b) shows the correlation between the activity signals calculated by the AI activity metric which is applicable on the raw and filtered datasets.

https://doi.org/10.1371/journal.pone.0261718.t002

PLOS ONE Detailed analysis and comparison of different activity metrics

PLOS ONE | https://doi.org/10.1371/journal.pone.0261718 December 21, 2021 16 / 28

https://doi.org/10.1371/journal.pone.0261718.t002
https://doi.org/10.1371/journal.pone.0261718


and HFEN can only be calculated in one way, in their cases, it is not possible to compare the

obtained activities for the filtered and unfiltered data.

It can be clearly seen in Figs 7 and 8 that the activity signals calculated using different met-

rics generally show strong similarities for both unfiltered and filtered datasets. In the case of

PIM, it can be observed that the signals calculated for the normalized dataset (UFNM) show a

much stronger correlation with the other metrics than the raw dataset (UFM), so PIM

(UFNM) was included in the comparisons.

Fig 7 shows a comparison of the activity signals calculated for the unfiltered dataset (UFM)

using different metrics with a red square. Comparison of the activity signals calculated for the

filtered magnitude data (FMpost) is marked with a yellow square. Fig 8 presents a similar com-

parison between activity signals determined for UFM with a red square, and for vector magni-

tudes of filtered axial data (FMpre) with a blue square. As mentioned above, in the case of AI

Fig 7. Correlation between activity signals calculated from raw (UFM, UFXYZ) and filtered datasets (FMpost, FXYZ). In

addition, we included the PIM metric applied on the UFNM dataset, too. The Pearson’s correlation coefficients are calculated

by 42 measurements, and their means are represented. Cells in the red square indicate correlations between activity signals

calculated by the unfiltered datasets, and cells in the yellow square include correlations between activity signals calculated by

the filtered datasets. Since our goal is to compare all 7 metrics, but no filtering is possible in the case of ENMO, and as HFEN

demands a specially filtered dataset, we included them in both comparisons.

https://doi.org/10.1371/journal.pone.0261718.g007
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metric, UFXYZ and FXYZ datasets were used. Furthermore, since our goal is to compare all 7

metrics, we also added those metrics to the comparison that are not currently applicable to the

examined datasets. For this reason, both the HFEN and the ENMO metrics were involved in

the comparison. However, since no filtering is possible in the case of ENMO, and as HFEN

demands a specially filtered dataset, we included them in both squares.

All activity signals in the red square, except AI(UFXYZ), show a very strong relationship

with the other–the correlation value is 0.89 in the worst case. The separation of the AI method

is understandable based on the purpose of its introduction: the authors did not look for an

indicator that returns the value of classical metrics, but for one that also carries additional

information which can be useful in distinguishing between different types of movements [48].

Similarly strong relationships can be seen for most of the activity signals calculated using

the filtered datasets, marked with a yellow square (FMpost) in Fig 7 and with a blue square

Fig 8. Correlation between activity signals calculated from raw (UFM, UFXYZ) and filtered datasets (FMpre, FXYZ). In

addition, we included the PIM metric applied on the UFNM dataset, too. The Pearson’s correlation coefficients are

calculated by 42 measurements, and their means are represented. Cells in the red square indicate correlations between

activity signals calculated by the unfiltered datasets, and cells in the blue square include correlations between activity signals

calculated by the filtered datasets. Since our goal is to compare all 7 metrics, but no filtering is possible in the case of ENMO,

and as HFEN demands a specially filtered dataset, we included them in both comparisons.

https://doi.org/10.1371/journal.pone.0261718.g008
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(FMpre) in Fig 8. For FMpost data in Fig 7, only the AI shows a slightly smaller correlation

with the other signals, in which case the difference has been discussed earlier for unfiltered

data. For the metrics applied on FMpost dataset, the lowest correlation value is 0.96. Moreover,

the HFEN metric with a special filtering and the ENMO metric without filtration show a very

strong relationship with the other signals, too.

In the case of FMpre data in Fig 8, the ENMO shows a slightly larger difference, which can

be easily explained by the lack of filtering. More surprisingly, the ZCM shows even more sig-

nificant differences from other metrics, which can be attributed to the sensitivity of the level

intersections. The correlation of the other 5 metrics is very strong here, too.

A completely identical pattern is observed in the frequency-domain; however, the differ-

ences are smaller. The spectral analysis was based on the values of the spectral correlation coef-

ficients calculated between the power spectrum densities of the activity signals. The

corresponding figure can be found in SFig 1 of the S4 Appendix.

The upper right and lower left parts of the tables in Figs 7 and 8 show that the correlation

between the activity signals calculated for the unfiltered (UFM) and filtered magnitude

(FMpost) data is strong, but much weaker in the case of UFM and vector magnitudes of fil-

tered axial data (FMpre), as we could expect in the light of the previous chapter. This is an

important finding, as most actigraphs filter acceleration signals per axis [51,57], and several

studies work with FMpre datasets [22,23]. Moreover, many studies provide little and incom-

plete information on which tools were used and on how and with what parameters the filtering

was carried out.

On the whole, based on Table 2 and Figs 7 and 8, we can conclude that TAT alone shows a

strong agreement both with all the different preprocessings and with other activities calculated

for the data preprocessed in almost any way. Therefore, it can be said that most metrics pro-

duce a similar activity signal for datasets preprocessed in the same way. However, these metrics

are generally applied to signals preprocessed in different ways, which, as we have seen, can

have significant differences between activity signals. As an example, MAD, AI, ENMO are

often applied for unfiltered data in the literature [47,48], while PIM, ZCM and TAT methods

are applied on data measured by devices using filtering.

Number of measured axes. So far, we have used the magnitude of the acceleration for

comparison in the case of each metric, except for AI. However, for 4 of the 7 metrics, it is pos-

sible to apply the metric to the axial data separately. In fact, we have no other option for devices

that measure acceleration in one or two axes only. Thus, two very interesting question emerge:

is it sufficient to determine the activity for fewer axes, and if yes, how does that relate to the

activity signal determined on the basis of triaxial data?

Although all three directions may play an important role in evaluating the intensity of a

movement, if an axis needs to be chosen, or we have a uniaxial device, the measurement is usu-

ally performed along the axis which is vertical when the hand is hung.

Based on Table 2 and S2 Appendix, for 4 metrics, we have the option to apply them to the

three axes separately, and only the MAD can be applied to the unfiltered, raw axial acceleration

signals (UFXYZ). Accordingly, in Fig 9, the examined metrics are applied to the acceleration

signals filtered per axis and to the vector magnitude calculated from them. The correlation

between the axial and vector magnitude-based activities are shown in the case of the 42 sub-

jects’ measured movements.

It can be clearly seen that for PIM and TAT metrics, there is a very strong correlation

between the activities obtained for the axial data and the vector magnitude data. In the case of

ZCM and MAD, a close relationship can be observed, too. Based on the S1 Table, the activity

signals calculated for different axes show a very close relationship with each other for each

metric.
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In the comparison presented in Fig 10, for ease of transparency, the activity signals are only

calculated on the FY vertical axis (and UFY in the case of MAD metric) and on the FMpre

datasets in the case of all possible metrics.

The cells in the pink square region of the matrix indicate that there is a very strong correla-

tion between the activities calculated for the axial acceleration by all four metrics: PIM, ZCM,

TAT and MAD; and the upper right corner of the table (separated by the pink and blue square)

show that they are closely related to the activity determined from triaxial data, too.

Fig 9. Correlation between filtered axial accelerations (FX, FY, FZ) to the vector magnitude calculated from them (FMpre) in the case

of 42 measurements regarding the PIM (a), ZCM (b), TAT (c) and MAD (d) activity metrics. The means of the individual correlation

curves are also represented as dotted horizontal lines with matching colors.

https://doi.org/10.1371/journal.pone.0261718.g009
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Interestingly, ZCM reveals a stronger correlation with other metrics per axis than when

applied to the magnitude of acceleration. The activity signal obtained for the MAD metric

applied to unfiltered y-axis acceleration (UFY) implies a less close relationship with the activi-

ties calculated for the filtered y-axis signals (FY) and the activities calculated for the vector

magnitudes (FMpre).

The result is consistent with previous studies that compare physical activity with derived

indicators and suggest that in many applications there may be a case where it is sufficient to

use only one axis, thus measuring only one axis [50,58]. In addition to reduced computational

requirements, this reduction can also be significant because the biggest challenges in measur-

ing raw acceleration signals are continuous, high-frequency measurement and data storage for

as long as possible. If the data to be measured and stored is reduced by a third, it means a very

significant reduction in consumption. At the same time, it is important to validate the result

by analysing the signals measured in this way and by comparing the results and indicators

obtained from the analysis of the magnitude of the acceleration.

Fig 10. Correlation between activity signals calculated from filtered Y-axis accelerations (FY) and from vector

magnitude of filtered axial accelerations (FMpre). MAD metric applied to UFY dataset is also included. The

Pearson’s correlation coefficients are calculated by 42 measurements, and their means are represented. Cells in the blue

square indicate correlations between activity signals calculated from the FMpre dataset and AI(FXYZ), ENMO and

HFEN signals. Cells in the pink square include correlations between activities calculated from the y-axis datasets for

those 4 metrics where we have the option to apply them to the three axes separately.

https://doi.org/10.1371/journal.pone.0261718.g010
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Further indicators calculated from the activity metrics applied on axial accelerations.

If we apply the activity metrics on axial data, it is a very relevant requirement to determine one

activity indicator based on the three activity values obtained for the axes. Using this indicator,

we can easily characterize the activity of the subject, as if we had determined one based on the

magnitude of acceleration. There are several ways to do this, for example we can add the values

obtained for the three axes together, we can also sum these values after squaring, or we can

apply Eq 3.

In the following, we determined different new activity indicators using all the 4 possible

axial metrics (PIM, ZCM, TAT and MAD), which we compared with the metrics obtained for

the vector magnitude of acceleration in each case. In the case of the PIM and the ZCM metric,

the comparison is shown in Fig 11.

For the remaining two metrics, the results are presented in SFig 1 of the S5 Appendix. It

can be clearly seen that most of the newly calculated activities (new activity indicators) show a

strong relationship with the activity signals calculated on the basis of the examined 7 metrics,

and a similar pattern can be discovered for all 4 metrics.

It can be stated that overall, the activity metrics determined per axis show a stronger corre-

lation with the vector magnitude-based activity metrics than any tested combinations of the

axial activity signals. An interesting fact is that for all 4 metrics, it is the VM3 as defined in Eq

3 that performs poorly, which indicator is widely used in practice [52,59–61].

Since the activity signals determined per axis also showed a strong correlation with the

activities determined from the triaxial data, it does not seem necessary to look for a new indi-

cator with an additional complex method, their sum or one of the axial activity signals may be

appropriate.

Conclusion

As presented, the activity signal can be calculated in many ways from the raw actigraphy

recordings. The difference can be caused by the preprocessing of raw acceleration data; i.e.,

whether we normalize, filter, if so, when, and by what metrics we calculate activity and apply it

to the axial signals or to the magnitudes of the resultant vectors. To investigate this, we calcu-

lated all possible 148 activity signals for the triaxial accelerations recorded during the 10-day

movement of 42 subjects and examined the mentioned issues by their correlation analysis.

Since an acceleration signal can be preprocessed in diverse ways before calculating an activ-

ity signal, to standardize the inconsistency found in the literature, we constructed a unified

nomenclature for the datasets, which are created by different preprocessings. We identified

which metrics could be used for each preprocessing method and presented (detailed in the S2

Appendix) what additional correction is required when applying the PIM metric for some

datasets., We examined what threshold value is appropriate for the level crossing based ZCM

and TAT methods, as there is no clear guidance for this in the literature. We found that the

standard deviation of the dataset shows a near-maximal correlation with the other metrics for

each preprocessing and takes a value close to the only recommendation known so far, but it is

adaptive, therefore it appears to be an optimal threshold level.

The effect of possible preprocessing methods was also identified. Removing the gravity of

Earth by normalization only affects the PIM metrics. Our results showed that if we use a filter

instead of normalization, it makes a difference depending on which step of the preprocessing

we apply it on. If the resulting acceleration vectors are filtered, the correlation is strong with

the activity signals calculated from the unfiltered data, but if we filter axially (this is more com-

mon) and then calculate the resultant vector magnitude, the activity calculated from it shows

more significant differences from the previous ones. Based on this, there may be a significant
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Fig 11. Correlation between new activity indicators based on the activity signals determined per axis using PIM (a), ZCM (b) metrics and the 7

metrics applied on filtered vector magnitudes (FMpost, FMpre, FXYZ). Each cell contains the Pearson’s correlation coefficient between the two

corresponding activity signals. The coefficients are calculated by 42 measurements, and their means are represented.

https://doi.org/10.1371/journal.pone.0261718.g011
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difference between the metrics widely used for unfiltered signals (e.g., ENMO and MAD) and

the activity signals calculated for the filtered signals (e.g., PIM, ZCM and TAT).

In summary, we can state that the relationship between 6 of the examined metrics is strong

for the identically prepared data, only the AI shows a more significant difference due to its

slightly different purpose. However, the raw signals are usually preprocessed in different ways

in the case of different methods and instruments, and based on our results, this may mean

more significant differences between the obtained activity signals. Thus, possibly weakly corre-

lated signals are similarly, misleadingly called “activity” in practice, and the results obtained

are compared although they are based on differently calculated activity signals.

We have presented that if we apply the metrics for axial acceleration signals–it is possible in

the case of 4 of the 7 metrics–, the activity obtained per axis and the combination of activities

obtained for the three axes also show a strong correlation with the activity calculated using the

magnitude of the acceleration vector. This, being consistent with previous results, shows that

in many cases where resource optimization is important, it is enough to measure the accelera-

tion on only one axis. We have also revealed that using the combination of activity values

determined per axis is unnecessary, since the combined activity signals show a weaker rela-

tionship with the activity signals calculated from magnitude data than the uncombined axial

activity signals.

The calculation methods for the 6 similar metrics are simple, there is no significant difference

in the complexity of their implementation. In the case of PIM, further technical corrections are

required on the data series. In the case of ZCM and TAT, the choice of the appropriate threshold

level is important. MAD is the only metric that can be applied on all possible datasets if we extend

its usage on axial data, which has no technical barriers. Both ENMO and HFEN can be applied to

only one, but a different type of dataset; however, they showed a strong relationship with activity

signals calculated with different metrics for both the raw and the two-way filtered datasets

(FMpre, FMpost). TAT is applicable on every dataset except for raw acceleration signals

(UFXYZ); however, it shows a very strong similarity when applied to both filtered per-axis signals

and to differently filtered vector magnitudes, and it also strongly correlates with almost any pre-

processed activity signals calculated by other metrics.

Supporting information

S1 Table. Correlation matrices. Our analyses are based on 148×148 time- and frequency-

domain correlation matrices. A correlation matrix covers all the possible use cases of every

activity metric listed in the article. With these activity metrics and different preprocessing

methods, we were able to calculate 148 different activity signals from multiple datasets of a sin-

gle measurement. Each cell of a correlation matrix contains the mean and standard deviation

of the calculated Pearson’s correlation coefficients between two types of activity signals based

on 42 different subjects’ 10-days-long motion. The small correlation matrices presented both

in the article and in the appendixes are derived from these 148 × 148 correlation matrices. This

published Excel workbook contains multiple sheets labelled according to their content. The

mean and standard deviation values for both time- and frequency-domain correlations can be

found on their own separate sheet. Moreover, we reproduced the correlation matrix with an

alternatively parametrized digital filter, which doubled the number of sheets to 8. In the Excel

workbook, we used the same notation for both the datasets and activity metrics as presented in

this article with an extension to the PIM metric: PIMs denotes the PIM metric where we used

Simpson’s 3/8 rule integration method, PIMr indicates the PIM metric where we calculated

the integral by simple numerical integration (Riemann sum).

(XLSX)
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